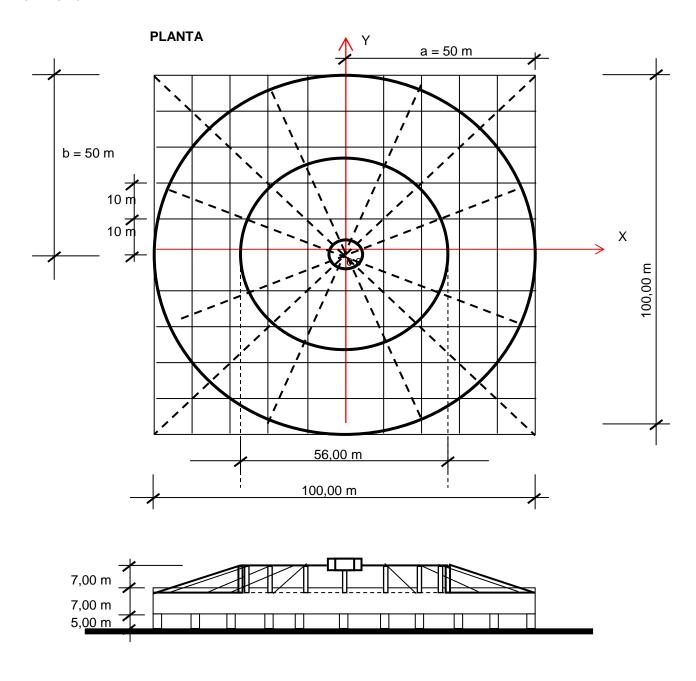
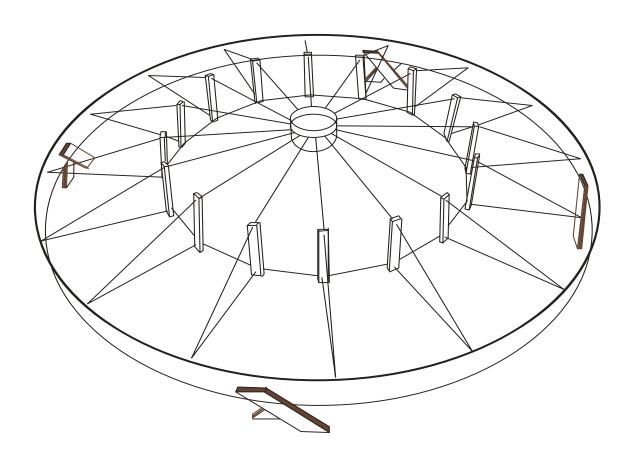


TP11	Trabajo Práctico 11: Estructuras de cables-Tensegrity				
DNC	Taller Vertical I: DELALOYE - NICO - CLIVIO (DNC)				
	Cátedra: ESTRUCTURAS - NIVEL III				
UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO					

Revisión: Ing. Delaloye


Fecha:set 2019

TENSEGRITY


Curso 2019

Elaboró: JTP Ing. Angel Maydana


EJERCICIO: Predimensionar el tensegrity para cubrir una planta circular de 100,00 m de diámetro, sometido a peso propio.

Se ha diseñado una estructura de cables con un anillo de compresión exterior (D = 100 m) que hace de cerramiento del estadio y un primer anillo de tracción (d1 = 56 m) a una altura de 10 m y un segundo anillo de tracción (d2 = 8 m) a una altura de 19 m. La altura se logra mediante puntales de 10 m de alturas, apoyados en el anillo de tracción.

GEOMETRÍA

$$tg \ \phi = \frac{7,00}{22,00} = 17,7^{\circ} \qquad tg \ \psi = \frac{3,00}{22,00}$$

	seno	coseno	tangente
φ=17,7°	0,3032	0,9529	0,3182
ψ=7,8°	0,1351	0,9908	0,1364

 $= 7.8^{\circ}$

ANÁLISIS DE CARGAS

Superficie cubierta: $3,1416 \times 100^2 / 4 = 7.854 \text{ m}^2$

Longitud de cables superiores: $8 \times (23,08 \times 2 + 56 \text{ m}) = 817 \text{ m}$

Longitud de cables inferiores: 16 x 22,20 m = 355 m

Longitud de cables \emptyset = 56 m x π = 176 m

1.348 m (tomamos 1.350 m)

Peso específico del acero: 7.850 kg / m3

Diámetro estimado de los cables: 5 cm : Sección: 19,6 cm² = 0,00196 m² Peso: 15,4 kg/m

Peso de los cables: 15,4 kg/m x 1.350 m : 20.790 kg
Peso de los pendolones: 200 kg x 16 : 3.200 kg
Peso de los uniones y complementos (12%) : 2.800 kg
(de la suma de los valores anteriores) 26.790 kg

Peso de los cables y demás : 3,4 kg / m²

Peso de la membrana no transitable : 18,0 kg / m²

Total $q = 25 \text{ kg}/\text{m}^2$

Consideramos que la succión del viento no cambia el sentido de la carga

Longitud del perímetro externo: 3,1416 x 100 = 314,16 m

Separación entre cerchas: 314,16 m / 16 = 19,6 m

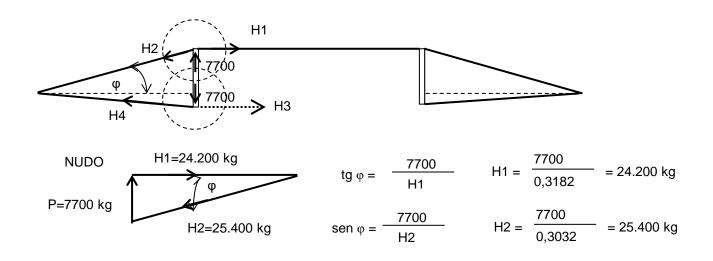
Longitud del perímetro intermedio: 3,1416 x 56 = 176,93

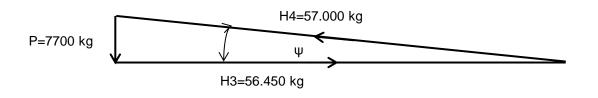
Separación entre cerchas: 176,93 m / 16 = 11,0 m

ESQUEMA DE CÁLCULO

 F_{\wedge} = 275 x 28 / 2 = 3850 kg

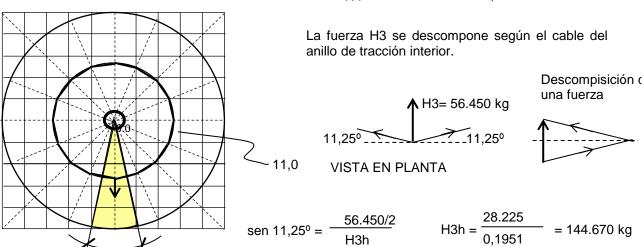
 $F_{\text{r}} = (490+275) \times 22 / 2 = 8.415 \text{ kg}$

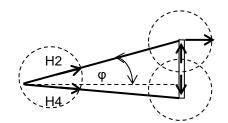



La carga del triángulo central sobre la cercha vale:

Esta carga la equilibra el puntal

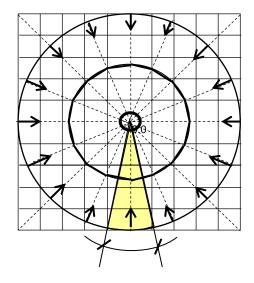
La carga del trapecio se distribuye una parte sobre el puntal (que por razones de equilibrio vale 3.850 kg, para que la resultante de ambas fuerzas iguales, pase por el puntal) y la otra parte al apoyo del anillo externo.

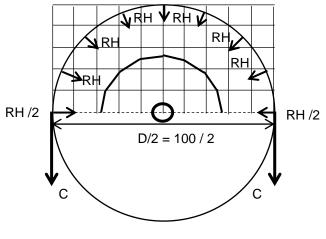

Compresión en el puntal: 3.850 kg + 3.850 kg = 7.700 kg



$$tg \psi = \frac{7700}{H3}$$
 $H3 = \frac{7700}{0,1364} = 56.450 \text{ kg}$

sen
$$\psi = \frac{7700}{H4}$$
 $H4 = \frac{7700}{0,1351} = 57.000 \text{ kg}$


Vemos la componente horizontal (Rh) en el nudo del anillo exterior:



RH = $25.400 \times \cos 17,7^{\circ} + 57.000 \times \cos 7,8^{\circ} = 24.204 + 56.476 =$ RH = 80.680 kg

La carga horizontal por unidad de longitud será:

 $Rh = 80.680 \times 16 / 3,1416 \times 100 = 4.110 \text{ kg/m}$

C = 4.110 kg/m x 100 / 2 = 205.500 kg

Y se dimensiona como si fuese una columna:

C (kg) x
$$\gamma$$
 = Fb (cm²) x σ 'bk (kg/cm²) +Fe (cm²) x σ ek (kg/cm²)

C (kg) x
$$\gamma$$
 = Fb (cm²) x [σ 'bk (kg/cm²) + μ_0 x σ ek (kg/cm²)]

Fb (cm²) = s x b =
$$\frac{C (kg) x \gamma}{[\sigma'bk (kg/cm²) + \mu_0 x \sigma ek (kg/cm²)]}$$
 $\gamma \ge 2.5$ $\mu_0 = 1\%$

Fb (cm²) = s x b =
$$\frac{205.500 \text{ (kg)} \times 2,5}{[175 \text{ (kg/cm}^2) +0.01 x 4200 \text{ (kg/cm}^2)]} = 2582 \text{ (cm}^2)$$

Fijando s = 20 cm, queda: b = 130 cm

$$\mu_0 = 1\% = 0.01 = \text{Fe} / (\text{s} \times \text{b})$$
 Fe = 0.01 × 20 cm × 130 cm = 31 cm²

23 Ø 12

12 Ø 12 en cada cara

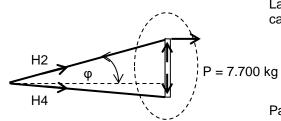
Dimensionado de los cables de la cercha:

Carga de Servicio x coef. seguridad	Resistencia rotura 180 kg/mm ²	Carga Rotura
H1= 24.200 kg x 2 = 48.400 kg	1 Cable 6 x 36 de 30 mm	53.600 kg
H2= 25.400 kg x 2 = 50.800 kg	1 Cable 6 x 36 de 30 mm	53.600 kg
H3h= 144.670 kg x 2 = 289.340 kg	4 Cables 6 x 36 de 35	291.600 kg
H4= 57.000 kg x 2 = 114.000 kg	3 Cables 6 x 36 de 26	120.300 kg

CABLE DE CONSTRUCCION PARA USO GENERAL: 6 x 36WS

6 x 36WS Construcción del cordón: 1+7+7/7+14 AT alma textil AA alma de acero

Diám.	Peso		180 kg/mm2				200 kg/mm2			
nom.	AT AA		AT AA		AT AA					
mm	kg/100m	kg/100m	kN	kgf	kN	kgf	kN	kgf	kN	kgf
9,5	34,3	37,7	52,6	5370	56,3	5700	64,6	6600	69,8	7100
11	45,9	50,6	70,6	7200	75,5	7700	77,9	7900	86,5	8800
13	64,3	70,7	98,3	10000	106	10800	109	11100	118	12000
14	74,5	82	114	11600	124	12600	127	12900	137	13900
16	97,3	107	149	15200	161	16400	166	16900	179	18200
18	123	135	189	19200	204	20800	209	21300	226	23000
19	137	150	211	21500	227	23100	233	23800	252	25700
20	152	167	234	23800	252	25600	259	26400	279	28400
22	184	202	282	28700	304	31000	313	31900	338	34500
24	219	241	336	34200	363	36900	372	37900	402	41000
26	257	283	395	40100	425	43300	437	44600	472	48100
28	298	328	458	46600	493	50300	507	51700	547	55800
30	342	376	526	53600	566	57700	544	55500	587	59900
32	389	428	598	60800	644	65700	662	67500	715	72900
35	466	512	715	72900	771	78600	792	80800	852	86900
36	493	542	757	77000	816	83100	838	85500	907	92500
38	549	604	843	86000	887	90500	934	95300	1010	103000


Los cables de acero se identifican mediante la nomenclatura que hace referencia a:

- 1.- la cantidad de cordones.
- 2.- la cantidad (exacta o nominal) de alambres en cada cordón.
- 3.- una letra o palabra descriptiva indicando el tipo de construcción.
- 4.- una designación de alma, cualitativa o cuantitativa.

Esta nomenclatura simple es sumamente práctica y está internacionalmente normalizada para los cables convencionales.

6x7+1 AT (6 cordones por 7 alambres por cordón más un alma textil)

Dimensionado de los pendolones:

La carga vertical a la que está sometido cada pendolón es una carga de compresión de 7.700 kg.

Para su diseño adoptaremos unos perfiles de acero plegados en frío, de sección compuesta (doble C)

Límite de fluencia: \mathbf{O} f = 2.400 kg/cm² Tensión admisible: \mathbf{O} e_{adm} = 1.400 kg/cm²

Longitud de la barra: L = 10.00 m

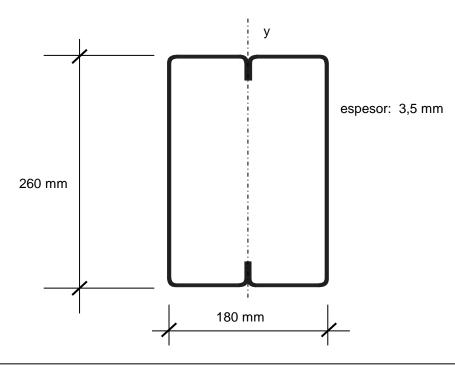
Condición de vinculación: Articulada-Articulada

Longitud de pandeo: Lp = 10.00 m

Adopto un perfil 260-180, con las siguientes características:

Área: 33,08 cm²

Peso: 26 kg/m Habíamos previsto 200 kg y resultó de 260 kg (en sus 10 m)


Radio de giro menor: $i_{v-v} = 7,13$

Esbeltez: $\lambda = 1000 \text{cm} / 7,13 \text{ cm} = 140$

Según el CIRSOC 302-Tabla 3- F24 - ω = 3,78

La tensión (considerando pandeo) resulta:

$$\mathbf{O} = P \times \omega / \text{Área} = \frac{7.700 \text{ kg} \times 3.78}{33.08 \text{ cm}^2} = 880 \text{ kg/cm}^2 < \mathbf{O} e_{\text{adm}} = 1.400 \text{ kg/cm}^2$$

Modelo en escala 1:100. Los cables fueron representados por alambres y los pendolones se realizaron en madera. Se logró tensión acortando los alambre y se completó con los pitones roscados.

En el armado se pudo experimentar la mayor tensión en el anillo interior, cuyo esfuerzo se denominó en el ejercicio como H3h, y también en el cable inferior (H4). Estos valores resultaron mayores en cinco veces y mayores en dos veces respectivamente, comparados con los esfuerzos en los cables superiores (H1 y H2), que son aproximadamente iguales.